Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2445/61327

Multiple-input multiple-output vs. single-input single-output neural network forecasting
Clavería González, Óscar; Monte Moreno, Enric; Torra Porras, Salvador
This study attempts to improve the forecasting accuracy of tourism demand by using the existing common trends in tourist arrivals form all visitor markets to a specific destination in a multiple-input multiple-output (MIMO) structure. While most tourism forecasting research focuses on univariate methods, we compare the performance of three different Artificial Neural Networks in a multivariate setting that takes into account the correlations in the evolution of inbound international tourism demand to Catalonia (Spain). We find that the MIMO approach does not outperform the forecasting accuracy of the networks when applied country by country, but it significantly improves the forecasting performance for total tourist arrivals. When comparing the forecast accuracy of the different models, we find that radial basis function networks outperform multilayer-perceptron and Elman networks.
Turisme
Xarxes neuronals (Informàtica)
Anàlisi multivariable
Sistemes MIMO
Tourism
Multivariate analysis
MIMO systems
cc-by-nc-nd, (c) Clavería et al., 2015
http://creativecommons.org/licenses/by-nc-nd/3.0/
Documento de trabajo
Universitat de Barcelona. Institut de Recerca en Economia Aplicada Regional i Pública
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Clavería González, Óscar; Monte Moreno, Enric; Torra Porras, Salvador
Clavería González, Óscar; Monte Moreno, Enric; Torra Porras, Salvador
Clavería González, Óscar; Monte Moreno, Enric; Torra Porras, Salvador
Clavería González, Óscar; Monte Moreno, Enric; Torra Porras, Salvador