Use this identifier to quote or link this document:

Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates
Cabré Vilagut, Xavier; Sire, Yannick
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
This is the first of two articles dealing with the equation (-)sv = f (v) in Rn, with s ¿ (0,1), where (-)s stands for the fractional Laplacian — the in¿nitesimal generator of a Lévy process. This equation can be realized as a local linear degenerate elliptic equation in Rn+1+ together with a nonlinear Neumann boundary condition on ¿Rn+1 + =Rn. In this ¿rst article, we establish necessary conditions on the nonlinearity f to admit certain type of solutions, with special interest in bounded increasing solutions in all of R. These necessary conditions (which will be proven in a follow-up paper to be also suficient for the existence of a bounded increasing solution) are derived from an equality and an estimate involving a Hamiltonian — in the spirit of a result of Modica for the Laplacian. Our proofs are uniform ass ¿1, establishing in the limit the corresponding known results for the Laplacian. In addition, we study regularity issues, as well as maximum and Harnack principles associated to the equation.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra
Nonlinear teories
Teories no-lineals

Show full item record