Per accedir als documents amb el text complet, si us plau, seguiu el següent enllaç:

Improving the accuracy of risk prediction from particle-based breakthrough curves reconstructed with kernel density estimators
Siirila, Erica; Fernández García, Daniel; Sánchez Vila, Francisco Javier
Universitat Politècnica de Catalunya. Departament d'Enginyeria del Terreny, Cartogràfica i Geofísica; Universitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
An edited version of this paper was published by AGU. Copyright (2015) American Geophysical Union.
While particle tracking techniques are often used in risk frameworks, the number of particles needed to properly derive risk metrics such as average concentration for a given exposure duration is often unknown. If too few particles are used, error may propagate into the risk estimate. In this work, we provide a less error-prone methodology for the direct reconstruction of exposure duration averaged concentration versus time breakthrough curves from particle arrival times at a compliance surface. The approach is based on obtaining a suboptimal kernel density estimator that is applied to the sampled particle arrival times. The corresponding estimates of risk metrics obtained with this method largely outperform those by means of traditional methods (reconstruction of the breakthrough curve followed by the integration of concentration in time over the exposure duration). This is particularly true when the number of particles used in the numerical simulation is small (<105), and for small exposure times. Percent error in the peak of averaged breakthrough curves is approximately zero for all scenarios and all methods tested when the number of particles is 10^5. Our results illustrate that obtaining a representative average exposure concentration is reliant on the information contained in each individual tracked particle, more so when the number of particles is small. They further illustrate the usefulness of defining problem-specific kernel density estimators to properly reconstruct the observables of interest in a particle tracking framework without relying on the use of an extremely large number of particles.
Peer Reviewed
Àrees temàtiques de la UPC::Desenvolupament humà i sostenible::Degradació ambiental::Contaminació de l'aigua
Àrees temàtiques de la UPC::Enginyeria civil::Geologia::Hidrologia subterrània
Groundwater--Pollution--Health aspects
Aigües subterrànies -- Contaminació

Mostra el registre complet del document

Documents relacionats

Altres documents del mateix autor/a

Siirila, Erica; Sánchez Vila, Francisco Javier; Fernández García, Daniel
Pedretti, Daniele; Fernández García, Daniel; Sánchez Vila, Francisco Javier; Barahona-Palomo, Marco; Bolster, Diogo
Sánchez Vila, Francisco Javier; Rubol, Simonetta; Carles Brangari, Albert; Fernández García, Daniel
Rubol, Simonetta; Freixa, Anna; Carles Brangari, Albert; Fernández García, Daniel; Romani Cornet, Anna Maria; Sánchez Vila, Francisco Javier