To access the full text documents, please follow this link: http://hdl.handle.net/2117/28516

Document-level machine translation with word vector models
Martínez Garcia, Eva; España Bonet, Cristina; Márquez Villodre, Luís
Universitat Politècnica de Catalunya. Departament de Ciències de la Computació; Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
In this paper we apply distributional semantic information to document-level machine translation. We train monolingual and bilingual word vector models on large corpora and we evaluate them first in a cross-lingual lexical substitution task and then on the final translation task. For translation, we incorporate the semantic information in a statistical document-level decoder (Docent), by enforcing translation choices that are semantically similar to the context. As expected, the bilingual word vector models are more appropriate for the purpose of translation. The final document-level translator incorporating the semantic model outperforms the basic Docent (without semantics) and also performs slightly over a standard sentence level SMT system in terms of ULC (the average of a set of standard automatic evaluation metrics for MT). Finally, we also present some manual analysis of the translations of some concrete documents
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural
Machine translation
Traducció automàtica
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Martínez Garcia, Eva; España Bonet, Cristina; Márquez Villodre, Luís
Martínez Garcia, Eva; España Bonet, Cristina; Tiedemann, Jörg; Márquez Villodre, Luís
Barrón Cedeño, Luis Alberto; España Bonet, Cristina; Boldoba Trapote, Josu; Márquez Villodre, Luís
Martínez Garcia, Eva; España Bonet, Cristina; Màrquez Villodre, Lluís
Lluis Martorell, Xavier; Carreras Pérez, Xavier; Márquez Villodre, Luís
 

Coordination

 

Supporters