To access the full text documents, please follow this link: http://hdl.handle.net/2117/27501

Mixed stabilized finite element methods in nonlinear solid mechanics. Part III: compressible and incompressible plasticity
Cervera Ruiz, Miguel; Chiumenti, Michèle; Benedetti, Lorenzo; Codina, Ramon
Universitat Politècnica de Catalunya. Departament de Resistència dels Materials i Estructures en Enginyeria; Universitat Politècnica de Catalunya. RMEE - Grup de Resistència de Materials i Estructures a l'Enginyeria; Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus; Universitat Politècnica de Catalunya. ANiComp - Anàlisi numèrica i computació científica
This paper presents the application of a stabilized mixed strain/displacement finite element formulation for the solution of nonlinear solid mechanics problems involving compressible and incompressible plasticity. The variational multiscale stabilization introduced allows the use of equal order interpolations in a consistent way. Such formulation presents two advantages when compared to the standard, displacement based, irreducible formulation: (a) it provides enhanced rate of convergence for the strain (and stress) field and (b) it is able to deal with incompressible situations. The first advantage also applies to the comparison with the mixed pressure/displacement formulation. The paper investigates the effect of the improved strain and stress fields in problems involving strain softening and localization leading to failure, using low order finite elements with continuous strain and displacement fields (P1P1 triangles or tetrahedra and Q1Q1 quadrilaterals, hexahedra, and triangular prisms) in conjunction with an associative frictional Drucker-Prager plastic model. The performance of the strain/displacement formulation under compressible and nearly incompressible deformation patterns is assessed and compared to a previously proposed pressure/displacement formulation. Benchmark numerical examples show the capacity of the mixed formulation to predict correctly failure mechanisms with localized patterns of strain, virtually free from any dependence of the mesh directional bias. No auxiliary crack tracking technique is necessary.
Peer Reviewed
Àrees temàtiques de la UPC::Física::Física de l’estat sòlid
Àrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
Plasticity--Mathematical models
Mixed finite elements
Stabilization
Plasticity
Strain softening
Strain localization
Mesh dependence
J2 plasticity
plane-stress
localization
elastoplasticity
discontinuities
formulation
bifurcation
equations
strain
Plasticitat -- Mètodes numèrics
info:eu-repo/semantics/submittedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Dialami Shabandarech, Narges; Chiumenti, Michèle; Cervera Ruiz, Miguel; Agelet de Saracibar Bosch, Carlos; Ponthot, Jean Philippe
 

Coordination

 

Supporters