Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/27035

i-Vector modeling with deep belief networks for multi-session speaker recognition
Ghahabi Esfahani, Omid; Hernando Pericás, Francisco Javier
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
In this paper we propose an impostor selection method for a Deep Belief Network (DBN) based system which models i-vectors in a multi-session speaker verification task. In the proposed method, instead of choosing a fixed number of most informative impostors, a threshold is defined according to the frequencies of impostors. The selected impostors are then clustered and the centroids are considered as the final impostors for target speakers. The system first trains each target speaker unsupervisingly by an adaptation method and then models discriminatively each target speaker using the impostor centroids and target i-vectors. The evaluation is performed on the NIST 2014 i-vector challenge database and it is shown that the proposed DBN-based system achieves 23% relative improvement of minDCF over the baseline system in the challenge
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la parla i del senyal acústic
Speech processing systems
Automatic speech recognition
Reconeixement automàtic de la parla
Processament de la parla
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Ghahabi Esfahani, Omid; Hernando Pericás, Francisco Javier
Ghahabi Esfahani, Omid; Hernando Pericás, Francisco Javier
Hernando Pericás, Francisco Javier; Hernando Pericás, Francisco Javier
Zelenak, Martin; Segura Perales, Carlos; Hernando Pericás, Francisco Javier
Zelenak, Martin; Schulz, Henrik; Hernando Pericás, Francisco Javier