To access the full text documents, please follow this link:

Internal report. Solving mixed integer non-linear programming problem applied to GNSS data
Yang, Heng; Monte Moreno, Enrique; Hernández Pajares, Manuel
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla; Universitat Politècnica de Catalunya. IonSAT - Grup de determinació Ionosfèrica i navegació per SAtèl·lit i sistemes Terrestres
Internal Report
The purpose of this paper is to characterize Medium Scale Trav- eling Ionospheric Disturbances (MSTIDs), by means of Mixed Integer Nonlinear Programming (MINLP). The MINLP techniques are used to for estimating the parameters of the equations that describe the MSTIDs from a set of observations. A new MSTIDs wave detecting method, which we will denote as Ambiguity Resolution in Global Navi- gational Satellite System (GNSS) Ionospheric Interferometry (ARGII) technique, is designed to model the MSTIDs wave with the data from the wide low-density GNSS receivers network. The ARGII techniques can be set as an special instance of MINLP, because the problem is set as a series of MSTIDs equations including the unknown wave veloc- ity (continuous) and cycle ambiguities (integers). The performance of heuristic and direct search optimization algorithms are evaluated by solving the MINLP problem with techniques bared an di erent prin- ciples, and as benchmark we use the solution obtained by exhaustive enumeration of all possible integer solutions. Among the algorithms we have implemented in this work are genetic algorithm, simulated annealing, particle swarm, pattern search and Nelder Mead methods. The GNSS data used to test the these solvers is observed from the wide GNSS network in the north of Poland on the day 353, 2013 whose di- ameter is more than the half of wavelength and therefore will have phase ambiguities. The evaluating experiments show that the results computed by the simple improved optimization algorithms especially the Nelder Mead have not only high correlations with the reference method (i.e. exhaustive enumeration) but also extremely lower time complexity compared to the benchmark method. Despite unguaran- teed global optimal results for the MINLP problems, these methods show the excellent performance in time complexity when computing the velocities of MSTIDs with ARGII techniques from large quantity of the GNSS data.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
Global Positioning System
Mixed Integer Nonlinear Programming
Medium Scale Traveling Ionospheric Disturbances
genetic algorithms
simulated annealing
particle swarm algorithms
pattern search algorithm
Nelder Mead algorithm
Sistema de posicionament global
Attribution-NonCommercial-NoDerivs 3.0 Spain
Article - Draft

Show full item record

Related documents

Other documents of the same author

Yang, Heng; Monte Moreno, Enrique; Hernández Pajares, Manuel
Hernández Pajares, Manuel; Wielgosz, Pawel; Paziewski, Jacek; Krypiak-Gregorczyk, Anna; Stepniak, Katarzyna; Bosy, Jaroslaw; Kaplon, Jan; Hadas, Tomasz; Orús Pérez, Raul; Monte Moreno, Enrique; Yang, Heng; Olivares Pulido, Germán; García Rigo, Alberto
Monte Moreno, Enrique; Hernández Pajares, Manuel; García Rigo, Alberto; Beniguel, Yannick; Orús Pérez, Raul; Prieto Cerdeira, Roberto; Schlueter, Stefan
Monte Moreno, Enrique; Hernández Pajares, Manuel