To access the full text documents, please follow this link:

On the formulation of closest-point projection algorithms in elastoplasticity. Part I: The variational structure.
Armero, Francisco; Pérez Foguet, Agustí
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III; Universitat Politècnica de Catalunya. EScGD - Ciències de l’Enginyeria i Desenvolupament Global
Report UCB/SEMM 2000-01 - Dept. of Civil Engineering - University of California at Berkeley, USA
We present in this paper the characterization of the variational structure behind the discrete equa- tions defining the closest-point projection approximation in elastoplasticity. Rate-independent and viscoplastic formulations are considered in the infinitesimal and the finite deformation range, the later in the context of isotropic finite strain multiplicative plasticity. Primal variational prin- ciples in terms of the stresses and stress-like hardening variables are presented first, followed by the formulation of dual principles incorporating explicitly the plastic multiplier. Augmented La- grangian extensions are also presented allowing a complete regularization of the problem in the constrained rate-independent limit. The variational structure identified in this paper leads to the proper framework for the development of new improved numerical algorithms for the integration of the local constitutive equations of plasticity as it is undertaken in Part II of this work.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica::Càlcul de variacions
Elastoplasticity--Mathematical models
Attribution-NonCommercial-NoDerivs 3.0 Spain
Article - Draft

Show full item record