To access the full text documents, please follow this link: http://hdl.handle.net/2117/26475

Outdoor view recognition based on landmark grouping and logistic regression
Todt, Eduardo; Torras, Carme
Universitat Politècnica de Catalunya. Institut de Robòtica i Informàtica Industrial; Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Vision-based robot localization outdoors has remained more elusive than its indoors counterpart. Drastic illumination changes and the scarceness of suitable landmarks are the main difficulties. This paper attempts to surmount them by deviating from the main trend of using local features. Instead, a global descriptor called landmark-view is defined, which aggregates the most visually-salient landmarks present in each scene. Thus, landmark co-occurrence and spatial and saliency relationships between them are added to the single landmark characterization, based on saliency and color distribution. A suitable framework to compare landmark-views is developed, and it is shown how this remarkably enhances the recognition performance, compared against single landmark recognition. A view-matching model is constructed using logistic regression. Experimentation using 45 views, acquired outdoors, containing 273 landmarks, yielded good recognition results. The overall percentage of correct view classification obtained was 80.6%, indicating the adequacy of the approach.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Robòtica
autonomous robot
robot navigation
Visual landmarks
visual saliency
Classificació INSPEC::Pattern recognition::Computer vision::Robot vision
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Alenyà Ribas, Guillem; Dellen, Babette; Foix Salmerón, Sergi; Torras, Carme
Borràs Sol, Júlia; Thomas, Federico; Torras, Carme
Rozo Castañeda, Leonel; Jimenez Schlegl, Pablo; Torras, Carme
 

Coordination

 

Supporters