To access the full text documents, please follow this link: http://hdl.handle.net/2099.1/25110

Banach Tarski Paradox and Amenability
Naranjo Barnet, Pol
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Burillo Puig, José; Reeves, Lawrence
The main objective of this bachelor thesis is to prove Banach-Tarski theorem. The theorem states that a ball in a 3-dimensional space can be split into finitely many pieces that can be rearranged to form two balls, each of the same size as the first one. The concept of amenability, which underlies the paradox, will be explained and characterized as well. We will also classify some groups in terms of amenability. Proving that groups in certain classes are all amenable and those in others classes are not is the approach that we will take to address this issue.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de grups
Group theory
Invariant measures
Amenability
Grups finits
Grups infinits
Classificació AMS::20 Group theory and generalizations::20F Special aspects of infinite or finite groups
http://creativecommons.org/licenses/by-nc-sa/3.0/es/
info:eu-repo/semantics/bachelorThesis
Universitat Politècnica de Catalunya
         

Show full item record

 

Coordination

 

Supporters