To access the full text documents, please follow this link:

Copper ion substituted hercynite (Cu0.03Fe0.97Al2O4): A highly active catalyst for liquid phase oxidation of cyclohexane
Mistri, Rajib; Maiti, Sayantani; Llorca Piqué, Jordi; Domínguez Escalante, Montserrat; Mandal, Tapas Kumar; Mohanty, Paritosh; Ray, Bidhan Chandra; Gayen, Arup
Universitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica; Universitat Politècnica de Catalunya. GREENER - Grup de recerca d´estudis energètics i de les radiacions
Copper ion substituted MAl2O4 (M = Mg, Mn, Fe, Ni and Zn) spinels, CuxM1-xAl2O4 (x = 0.03 and 0.05), have been synthesized by a single step solution combustion method. Of the various compositions studied the 3 at.% copper ion substituted hercynite, Cu0.03Fe0.97Al2O4, reported here for the first time, is shown to be much more active (similar to 92% conversion with similar to 99% selectivity) than other spinet analogues towards liquid phase oxidation of cyclohexane in acetonitrile with H2O2 as oxidant in air. Powder XRD analyses have revealed formation of pure hercynite phases. The least-square refined lattice parameters obtained from XRD data together with microstructural data by HRTEM have indicated copper ion substitution in the spinel lattice. The oxidation state of copper has been established as +2 from XPS analysis and it seem to be primarily substituted in the Fe-site of hercynite. Incorporation of the copper in the spinel structure of FeAl2O4 leading to an ionic interaction is explained to be responsible for the higher oxidation activity observed over the combustion synthesized catalyst than the corresponding impregnated catalyst which contains finely dispersed CuO crystallites. Effect of recycling (repeated thrice) has shown almost no degradation of activity of the copper ion substituted hercynite. In contrast, the analogous impregnated catalyst has shown appreciable loss of activity in the consecutive cycles due to the presence of dispersed CuO crystallites which can agglomerate with ease and subsequently leach out. (C) 2014 Elsevier B.V. All rights reserved.
Àrees temàtiques de la UPC::Enginyeria química::Química orgànica::Compostos orgànics
Copper catalysts
Copper substitution
Solution combustion
Cyclohexane oxidation
Ionic interaction
Catalitzadors de coure
Attribution-NonCommercial-NoDerivs 3.0 Spain

Show full item record

Related documents

Other documents of the same author

Mistri, Rajib; Rahaman, Motiar; Llorca Piqué, Jordi; Priolkar, Kaustubh R.; Ray, Bidhan Chandra; Colussi, Sara; Gayen, Arup
Yalfani, Mohammad S.; Contreras, Sandra; Llorca Piqué, Jordi; Domínguez Escalante, Montserrat; Sueiras, Jesús; Medina, Francesc
Colussi, Sara; Gayen, Arup; Farnesi Camellone, Matteo; Boaro, Marta; Llorca Piqué, Jordi; Fabris, Stefano; Trobarelli, Alessandro