To access the full text documents, please follow this link: http://hdl.handle.net/2117/24993

A new approach to the vakonomic mechanics
Llibre Saló, Jaume; Ramírez Ros, Rafael; Sadovskaia Nurimanova, Natalia Guennadievna
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions; Universitat Politècnica de Catalunya. MMAC - Models Matemàtics aplicats a les ciencies humanes i de la natura
The aim of this paper was to show that the Lagrange-d'Alembert and its equivalent the Gauss and Appel principle are not the only way to deduce the equations of motion of the nonholonomic systems. Instead of them we consider the generalization of the Hamiltonian principle for nonholonomic systems with non-zero transpositional relations. We apply this variational principle, which takes into the account transpositional relations different from the classical ones, and we deduce the equations of motion for the nonholonomic systems with constraints that in general are nonlinear in the velocity. These equations of motion coincide, except perhaps in a zero Lebesgue measure set, with the classical differential equations deduced with the d'Alembert-Lagrange principle. We provide a new point of view on the transpositional relations for the constrained mechanical systems: the virtual variations can produce zero or non-zero transpositional relations. In particular, the independent virtual variations can produce non-zero transpositional relations. For the unconstrained mechanical systems, the virtual variations always produce zero transpositional relations. We conjecture that the existence of the nonlinear constraints in the velocity must be sought outside of the Newtonian mechanics. We illustrate our results with examples.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística
Nonholonomic dynamical systems
Variational principle
Generalized Hamiltonian principle
d'Alembert-Lagrange principle
Constrained Lagrangian system
Transpositional relations
Vakonomic mechanic
Equation of motion
Vorones system
Chapligyn system
Newtonian model
NONHOLONOMIC SYSTEMS
CONSTRAINED SYSTEMS
DYNAMICS
REALIZATION
PRINCIPLE
GEOMETRY
Sistemes dinàmics diferenciables
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Llibre Saló, Jaume; Ramírez Inostroza, Rafael Orlando; Sadovskaia Nurimanova, Natalia Guennadievna
Llibre Saló, Jaume; Ramírez Inostroza, Rafael Orlando; Sadovskaia Nurimanova, Natalia Guennadievna
Ramírez Inostroza, Rafael Orlando; Sadovskaia Nurimanova, Natalia Guennadievna
Ramírez Inostroza, Rafael Orlando; Sadovskaia Nurimanova, Natalia Guennadievna
 

Coordination

 

Supporters