Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/24937

Tensor Networks for Lattice Gauge Theories with continuous groups
Tagliacozzo, Luca; Celi, Alessio; Lewenstein, Maciej
Institut de Ciències Fotòniques
We discuss how to formulate lattice gauge theories in the tensor-network language. In this way, we obtain both a consistent-truncation scheme of the Kogut-Susskind lattice gauge theories and a tensornetwork variational ansatz for gauge-invariant states that can be used in actual numerical computations. Our construction is also applied to the simplest realization of the quantum link models or gauge magnets and provides a clear way to understand their microscopic relation with the Kogut-Susskind lattice gauge theories. We also introduce a new set of gauge-invariant operators that modify continuously RokhsarKivelson wave functions and can be used to extend the phase diagrams of known models. As an example, we characterize the transition between the deconfined phase of the Z2 lattice gauge theory and the RokhsarKivelson point of the Uð1Þ gauge magnet in 2D in terms of entanglement entropy. The topological entropy serves as an order parameter for the transition but not the Schmidt gap.
Peer Reviewed
Àrees temàtiques de la UPC::Física
Gauge fields (Physics)
Gauge Field Theory
Gauge, Camps de
info:eu-repo/semantics/submittedVersion
Artículo
ACS Publications
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Graß, Tobias; Muschik, Christine; Celi, Alessio; Chhajlany, Ravindra W.; Lewenstein, Maciej
Stojevic, Vid; Haegeman, Jutho; McCulloch, I. P.; Tagliacozzo, Luca; Verstraete, Frank
Manzo, Carlo; Torreno-Pina, Juan A.; Massignan, Pietro; Lapeyre, Gerald J.; Lewenstein, Maciej; Garcia Parajo, María F.
Massignan, Pietro; Lampo, Aniello; Wehr, Jan; Lewenstein, Maciej