To access the full text documents, please follow this link:

Nonconforming discretization of the electric-field integral equation for closed perfectly conducting objects
Úbeda Farré, Eduard; Rius Casals, Juan Manuel; Heldring, Alexander
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. ANTENNALAB - Grup d´Antenes i Sistemes Radio
Galerkin implementations of the method of moments (MoM) of the electric-field integral equation (EFIE) have been traditionally carried out with divergence-conforming sets. The normal-continuity constraint across edges gives rise to cumbersome implementations around junctions for composite objects and to less accurate implementations of the combined field integral equation (CFIE) for closed sharp-edged conductors. We present a new MoM-discretization of the EFIE for closed conductors based on the nonconforming monopolar-RWG set, with no continuity across edges. This new approach, which we call
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació
Integral equations
Basis functions
electric field integral equation (EFIE)
integral equations
moment method
Electromagnetic scattering
Dielectric objects
Equacions integrals

Show full item record

Related documents

Other documents of the same author

Heldring, Alexander; Úbeda Farré, Eduard; Rius Casals, Juan Manuel
Rius Casals, Juan Manuel; Jofre Roca, Lluís; Tamayo Palau, José María; Heldring, Alexander; Úbeda Farré, Eduard
Rius Casals, Juan Manuel; Carbó Meseguer, Alexis; Bjerkemo, Jakob; Úbeda Farré, Eduard; Heldring, Alexander; Mallorquí Franquet, Jordi Joan; Broquetas Ibars, Antoni
Úbeda Farré, Eduard; Rius Casals, Juan Manuel; Heldring, Alexander