To access the full text documents, please follow this link: http://hdl.handle.net/2117/23484

Large-scale image classification using ensembles of nested dichotomies
Ramisa Ayats, Arnau; Torras, Carme
Universitat Politècnica de Catalunya. Institut de Robòtica i Informàtica Industrial; Universitat Politècnica de Catalunya. ROBiri - Grup de Robòtica de l'IRI
Many techniques to reduce the cost at test time in large-scale problems involve a hierarchical organization of classifiers, but are either too expensive to learn or degrade the classification performance. Conversely, in this work we show that using ensembles of randomized hierarchical decompositions of the original problem can both improve the accuracy and reduce the computational complexity at test time. The proposed method is evaluated in the ImageNet Large Scale Visual Recognition Challenge’10, with promising results.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Robòtica
Computer vision
computer vision image classification Author keywords: large-scale image classification
classifier ensembles
ensembles of nested dichotomies
Visió per ordinador
Classificació INSPEC::Pattern recognition::Computer vision
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/submittedVersion
info:eu-repo/semantics/conferenceObject
IOS Press
         

Show full item record

Related documents

Other documents of the same author

Ramisa Ayats, Arnau; Alenyà Ribas, Guillem; Moreno-Noguer, Francesc; Torras, Carme
Ramisa Ayats, Arnau; Alenyà Ribas, Guillem; Moreno-Noguer, Francesc; Torras, Carme
Ramisa Ayats, Arnau; Alenyà Ribas, Guillem; Moreno-Noguer, Francesc; Torras, Carme
Alenyà Ribas, Guillem; Moreno-Noguer, Francesc; Ramisa Ayats, Arnau; Torras, Carme
Ramisa Ayats, Arnau; Alenyà Ribas, Guillem; Moreno-Noguer, Francesc; Torras, Carme
 

Coordination

 

Supporters