To access the full text documents, please follow this link: http://hdl.handle.net/2445/51504

On the connectivity of the escaping set for complex exponential Misiurewicz parameters
Jarque i Ribera, Xavier
Universitat de Barcelona
Let $ E_{\lambda}(z)=\lambda {\rm exp}(z), \lambda\in \mathbb{C}$, be the complex exponential family. For all functions in the family there is a unique asymptotic value at 0 (and no critical values). For a fixed $ \lambda$, the set of points in $ \mathbb{C}$ with orbit tending to infinity is called the escaping set. We prove that the escaping set of $ E_{\lambda}$ with $ \lambda$ Misiurewicz (that is, a parameter for which the orbit of the singular value is strictly preperiodic) is a connected set.
Dinàmica
Funcions holomorfes
Dinàmica topològica
Dynamics
Holomorphic functions
Topological dynamics
(c) American Mathematical Society (AMS), 2011
Article
info:eu-repo/semantics/publishedVersion
American Mathematical Society (AMS)
         

Show full item record

Related documents

Other documents of the same author

Devaney, Robert L.; Fagella Rabionet, Núria; Garijo Real, Antonio; Jarque i Ribera, Xavier
Devaney, Robert L.; Fagella Rabionet, Núria; Garijo Real, Antonio; Jarque i Ribera, Xavier
Baranski, Krzysztof; Fagella Rabionet, Núria; Jarque i Ribera, Xavier; Karpinska, Boguslava
Campos, Beatriz; Garijo, Antonio; Jarque i Ribera, Xavier; Vindel, Pura
Guillamon, A.; Jarque i Ribera, Xavier; Llibre, Jaume; Ortega Cerdà, Joaquim; Torregrosa, J.
 

Coordination

 

Supporters