Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2099.1/20888

Multi-class Classification with Machine Learning and Fusion
Garcia Cifuentes, Cristina
Sturzel, Marc; Roux, Michel
Treball realitzat a TELECOM ParisTech i EADS France
Multi-class classification is the core issue of many pattern recognition tasks. Several applications require high-end machine learning solutions to provide satisfying results in operational contexts. However, most efficient ones, like SVM or Boosting, are generally mono-class, which introduces the problem of translating a global multi-class problem is several binary problems, while still being able to provide at the end an answer to the original multi-class issue. Present work aims at providing a solution to this multi-class problematic, by introducing a complete framework with a strong probabilistic and structured basis. It includes the study of error correcting output codes correlated with the definition of an optimal subdivision of the multi-class issue in several binary problems, in a complete automatic way. Machine learning algorithms are studied and benchmarked to facilitate and justify the final selection. Coupling of automatically calibrated classifiers output is obtained by applying iterative constrained regularisations, and a logical temporal fusion is applied on temporal-redundant data (like tracked vehicles) to enhance performances. Finally, ranking scores are computed to optimize precision and recall is ranking-based systems. Each step of the previously described system has been analysed from a theoretical an empirical point of view and new contributions are introduced, so as to obtain a complete mathematically coherent framework which is both generic and easy-to-use, as the learning procedure is almost completely automatic. On top of that, quantitative evaluations on two completely different datasets have assessed both the exactitude of previous assertions and the improvements that were achieved compared to previous methods.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes
Pattern recognition systems
Machine learning
probabilistic framework
fusion
multiclass
calibration
error correcting output codes (ECOC)
coupling
logical f usion
SVM
HTM Numenta
Reconeixement de formes (Informàtica)
Aprenentatge automàtic
info:eu-repo/semantics/bachelorThesis
Universitat Politècnica de Catalunya;
École nationale supérieure des télécommunications (França)
         

Mostrar el registro completo del ítem