Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2099.1/20724

Aprenentatge de mètriques per a reconeixement facial;
Metric learning for facial recognition;
Aprendizaje de métricas para reconocimiento facial
Martínez Padró, Arnau
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Morros Rubió, Josep Ramon
[ANGLÈS] This work is about implementation and test of metric learning methods, specifically the algorisms Large Margin Nearest Neighbor (LMNN) and Information Theoretic Metric Learning (ITML), in the faces identification system developed in the UPC, comparing the results with those obtained by applying distances used to date. Currently the system classifies every face into a pre-established identity, even if the face is really different form the others (for example people unknown to the system). To solve that an impostor rejection system will be designed and implemented through a multiclass verification. Also, how the metric learning affect to the rejection of impostors will be evaluated. Several simulations have been be performed in order to find which are the best parameters in metric learning and to find how the recognition rate change respect the classical metrics.
[CASTELLÀ] Este trabajo está centrado en la implementación y el testeo de métodos de aprendizaje de métricas, concretamente los algorismos Large Margin Nearest Neighbor (LMNN) e Information Theoretic Metric Learning (ITML), en el sistema de identificación de caras desarrollado en la UPC, comparando los resultados obtenidos con los obtenidos al aplicar distancias usadas hasta la fecha. Además se diseñado e implementado un sistema de rechazo de impostores (personas foráneas al conjunto de trabajo) mediante una verificación multiclase, ya que hasta ahora el sistema clasificaba todas las caras en alguna de las identidades preestablecidas aunque una cara sea muy diferente respeto todas las otras (por ejemplo con caras de personas desconocidas por el sistema). También se evalúa en qué grado ayudan o no los métodos de aprendizaje de métricas en el rechazo de impostores. Se han llevado a cabo distintas simulaciones para encontrar los mejores parámetros en el aprendizaje de métricas, así como para estudiar como varían las tasas de reconocimiento de caras respeto a métricas tradicionales y para ver cómo afecta el aprendizaje de métricas en el sistema de rechazo de impostores.
[CATALÀ] Aquest treball està centrat en la implementació i la prova de mètodes d'aprenentatge de mètriques, concretament els algorismes Large Margin Nearest Neighbor (LMNN) i Information Theoretic Metric Learning (ITML), en el sistema d'identificació de cares desenvolupat a la UPC, comparant els resultats amb els que s'obtenen a l'aplicar distàncies usades fins a la data. A més es dissenya i implementa un sistema de rebuig d'impostors (persones alienes al conjunt de treball) mitjançant una verificació multiclasse, ja que fins ara el sistema classificava totes les cares d'entrada en alguna de les identitats preestablertes per molt diferent que una cara fos respecte totes les altres (per exemple amb cares de persones desconegudes pel sistema). També s'avalua en quin grau ajuden o no els mètodes d'aprenentatge de mètriques en el rebuig d'impostors. S’han dut a terme diverses simulacions per a trobar els millors paràmetres en l'aprenentatge de mètriques, per veure com milloren les taxes de reconeixement de cares respecte a mètriques tradicionals i com afecta l'aprenentatge de mètriques en el sistema de rebuig d'impostors.
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes
Human face recognition (Computer science)
Visión por ordenador
Reconeixement facial (Informàtica)
S'autoritza la difusió de l'obra mitjançant la llicència Creative Commons o similar 'Reconeixement-NoComercial- SenseObraDerivada'
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/bachelorThesis
Universitat Politècnica de Catalunya
         

Mostrar el registro completo del ítem