To access the full text documents, please follow this link: http://hdl.handle.net/2099.1/20530

Some ODE solutions for the fractional Yamabe problem;
Geometria conforme i el problema de Yamabe
Torre Pedraza, Azahara de la
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; González Nogueras, María del Mar
We construct some ODE solutins for the fractional Yamabe problem in conformal geometry. The fractional curvature, which is a generalization of the usual scalar curvature, is defined from the conformal fractional Laplacian, which is a non-local operator construced on the conformal infinity of a conformally compact Einstein manifold. On one hand, we consider the hyperbolic manifold $\mathbb S^1(L)\times \mathbb R^3$ and study the nonuniqueness of solutions for the fractional Yamabe problem. On the other hand, we look at the existence of radial solutions for the Yamabe problem in Euclidean space with an isolated singularity at the origin. Both equations are fractional order ODE for which new tools need to be developed.. La geometria conforme estudia les transformacions que preserven angles. Això fa que les nocions de curvatura més importants es puguin descriure mitjançant equacions en derivades parcials ellíptiques. El projecte consisteix en aprofondier en aquesta relació, fent servir eines de les EDP per a resoldre problemes geomètrics
Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria
Geometry
Yamabe problem
Fractional curvature
Isolated singularities
Anti-de-Sitter space
Fractional ODE
Radial solutions
Geometria
Classificació AMS::53 Differential geometry
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/masterThesis
Universitat Politècnica de Catalunya
         

Show full item record

 

Coordination

 

Supporters