# This Collection

By Defense Date By Authors By Titles By Subject

# Statistics

View Statistics All RECERCAT

# My RECERCAT

To access the full text documents, please follow this link: http://hdl.handle.net/2117/21026

 Title: Determinant of a matrix that commutes with a Jordan matrix Montoro López, María Eulalia; Ferrer Llop, Josep; Mingueza, David Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions Let F be an arbitrary field, Mn(F) the set of all matrices n×n over F and J∈Mn(F) a Jordan matrix. In this paper, we obtain an explicit formula for the determinant of any matrix that commutes with J, i.e., the determinant of any element T∈Z(J), the centralizer of J. Our result can also be extended to any T′∈Z(A), where A∈Mn(F), can be reduced to J=S−1AS. This is because T=S−1T′S∈Z(J), and clearly View the MathML source. If F is algebraically closed, any matrix A can be reduced in this way to a suitable J. In order to achieve our main result, we use an alternative canonical form W∈Mn(F) called the Weyr canonical form. This canonical form has the advantage that all matrices K∈Z(W) are upper block triangular. The permutation similarity of T∈Z(J) and K∈Z(W) is exploited to obtain a formula for the determinant of T. The paper is organized as follows: Section 2 contains some definitions and notations that will be used through all the paper. In Section 3, matrices T∈Z(J) are described and the determinant of T is computed in a particular case. In Section 4, we recall the Weyr canonical form W of a matrix and the corresponding centralizer Z(W). A formula to compute the determinant of any K∈Z(W) is rewritten. Finally, in Section 5 an explicit formula for the determinant of any T∈Z(J) is obtained. Peer Reviewed Àrees temàtiques de la UPC::Matemàtiques i estadísticaJordan matrixToeplitz matricesJordan, Àlgebres deToeplitz, Matrius de Attribution-NonCommercial-NoDerivs 3.0 Spain http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/publishedVersionArticle Elsevier

# Related documents

## Other documents of the same author

Mingueza, David; Montoro López, María Eulalia; Pacha Andújar, Juan Ramón
Mingueza, David; Montoro López, María Eulalia; Pacha Andújar, Juan Ramón
García Planas, María Isabel; Magret Planas, Maria dels Dolors; Montoro López, María Eulalia
Magret Planas, Maria dels Dolors; Montoro López, María Eulalia
Magret Planas, Maria dels Dolors; Montoro López, María Eulalia

Coordination

Supporters