To access the full text documents, please follow this link:

Tsallis Entropy for Geometry Simplification
Castelló, Pascual; González, Carlos; Chover, Miguel; Sbert, Mateu; Feixas Feixas, Miquel
This paper presents a study and a comparison of the use of different information-theoretic measures for polygonal mesh simplification. Generalized measures from Information Theory such as Havrda–Charvát–Tsallis entropy and mutual information have been applied. These measures have been used in the error metric of a surface simplification algorithm. We demonstrate that these measures are useful for simplifying three-dimensional polygonal meshes. We have also compared these metrics with the error metrics used in a geometry-based method and in an image-driven method. Quantitative results are presented in the comparison using the root-mean-square error (RMSE)
This work was supported by the Spanish Ministry of Science and Innovation (Project TIN2010-21089-C03-03 and TIN2010-21089-C03-01) and Feder Funds, Bancaixa (Project P1.1B2010-08), Generalitat Valenciana (Project PROMETEO/2010/028) and Project 2009-SGR-643 of Generalitat de Catalunya (Catalan Government)
Informació, Teoria de la
Information theory
Entropia (Teoria de la informació)
Entropy (Information theory)
Attribution 3.0 Spain
Molecular Diversity Preservation International (MDPI)

Show full item record

Related documents

Other documents of the same author

Bardera i Reig, Antoni; Rigau Vilalta, Jaume; Boada, Imma; Feixas Feixas, Miquel; Sbert, Mateu
González García, Francisco; Sbert, Mateu; Feixas Feixas, Miquel
Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Bekaert, Philippe; Sbert, Mateu
Rigau Vilalta, Jaume; Feixas Feixas, Miquel; Sbert, Mateu