Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Wetland inundation monitoring by the synergistic use of ENVISAT/ASAR imagery and ancilliary spatial data
Martí Cardona, Belén; Dolz Ripollès, Josep; López Martínez, Carlos
Universitat Politècnica de Catalunya. Departament d'Enginyeria Hidràulica, Marítima i Ambiental; Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. FLUMEN - Grup de recerca en Dinàmica Fluvial i Enginyeria Hidrològica; Universitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
on the water resources. In a scenario of climate change and increased anthropogenic pressure, detailedmonitoring of the water resources provides a fundamental tool to assess the ecosystem health and identify potential threats. Doñana wetlands, in Southwest Spain, dry out every summer and progressively flood in fall and winter to a maximum extent of 30,000 ha. Thewetland filling up processwasmonitored in detail during the 2006–2007 hydrologic cycle bymeans of twenty-one Envisat/ASAR scenes, acquired at different incidence angles in order to maximize the observation frequency. Flood mapping from the two uncorrelated ASAR channel data alone was proved unfeasible due to the complex casuistic of Doñana cover backscattering. This study addresses the synergistic utilization of the ASAR data together with Doñana's digital elevation model and vegetation map in order to achieve flood mapping. Filtering and clustering algorithms were developed for the automated generation of Doñana floodmaps from the ASAR images. The use of irregular filtering neighborhoods adapted to the elevation contours drastically improved the ASAR image filtering. Edge preservation was excellent, since natural edges closely follow terrain contours. Isotropic neighborhoodswere assumed of a single class and their intensitieswere averaged. As a result, intensity fluctuations due to speckle and texture over areas of the same cover type were smoothed remarkably. The clustering and classification algorithm operate on individual sub-basins, as the pixel elevation is more accurately related to the cover classes within them. Vegetation and elevation maps plus knowledge of Doñana backscattering characteristics from preceding studies were initially used to select seed pixelswith high confidence on their class membership. Next, a region growing algorithm extends the seed regions with new pixels based on their planimmetric adjacency and backscattering Mahalanobis distance to the seeds. During the seed region growth, new pixels' possible classes are not constrained to their cover type according to the vegetation map, so the algorithm is able to capture temporal changes in the vegetation spatial distribution. Comparison of the resultant classification and concurrent ground truth yielded 92% of flood mapping accuracy. The flood mapping method is applicable to the available ASAR images of Doñana fromsix other hydrologic cycles.
Àrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària
Àrees temàtiques de la UPC::Desenvolupament humà i sostenible
Sewage sludge -- Environmental aspects
Flood mapping
DTM-guided filtering
Mahalanobis distance
Synthetic aperture radar
Parc Nacional de Doñana (Andalusia)
Radar d'obertura sintètica
Zones humides

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Martí Cardona, Belén; López Martínez, Carlos; Dolz Ripollès, Josep
Martí Cardona, Belén; López Martínez, Carlos; Dolz Ripollès, Josep
Martí Cardona, Belén; Ramos, Anaïs; Bladé i Castellet, Ernest; Duc Tran, Thunh; Dolz Ripollès, Josep
Arbat Bofill, Marina; Martí Cardona, Belén; Bladé i Castellet, Ernest; Sánchez Juny, Martí; Niñerola Chifoni, Daniel; Dolz Ripollès, Josep; Cea Gómez, Luís; Prats Rodríguez, Jordi
Ramos Fuertes, Anaïs; Martí Cardona, Belén; Bladé i Castellet, Ernest; Dolz Ripollès, Josep