To access the full text documents, please follow this link: http://hdl.handle.net/2117/20089

Stable discretization of the electric-magnetic field integral equation with the taylor-orthogonal basis functions
Úbeda Farré, Eduard; Tamayo Palau, José María; Rius Casals, Juan Manuel; Heldring, Alexander
Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions; Universitat Politècnica de Catalunya. ANTENNALAB - Grup d´Antenes i Sistemes Radio
We present two new facet-oriented discretizations in method of moments (MoM) of the electric-magnetic field integral equation (EMFIE) with the recently proposed Taylor-orthogonal (TO) and divergence-Taylor-orthogonal (div-TO) basis functions. These new schemes, which we call stable, unlike the recently published divergence TO discretization of the EMFIE, which we call standard, result in impedance matrices with stable condition number in the very low frequency regime. More importantly, we show for sharp-edged objects of moderately small dimensions that the computed RCS with the stable EMFIE schemes show improved accuracy with respect to the standard EMFIE scheme. The computed RCS for the sharp-edged objects tested becomes much closer to the RCS computed with the RWG discretization of the electric-field integral equation (EFIE), which is well-known to provide good RCS accuracy in these cases. To provide best assessment on the relative performance of the several implementations, we have cancelled the main numerical sources of error in the RCS computation: (i) we implement the EMFIE so that the non-null static quasi-solenoidal current does not contribute in the far- field computation; (ii) we compute with machine-precision the strongly singular Kernel-contributions in the impedance elements with the direct evaluation method.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica
Radial basis functions
Integral equations
Moments method (Statistics)
Magnetic fields--Mathematics
Basis functions
integral equations
magnetic field integral equation magnetic field integral equation (MFIE)
method of moments (MoM)
Equacions integrals
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Heldring, Alexander; Tamayo Palau, José María; Rius Casals, Juan Manuel; Úbeda Farré, Eduard
Heldring, Alexander; Rius Casals, Juan Manuel; Tamayo Palau, José María; Parrón, Josep; Úbeda Farré, Eduard
Rius Casals, Juan Manuel; Jofre Roca, Lluís; Tamayo Palau, José María; Heldring, Alexander; Úbeda Farré, Eduard
Heldring, Alexander; Tamayo Palau, José María; Simon, C.; Úbeda Farré, Eduard; Rius Casals, Juan Manuel
Heldring, Alexander; Rius Casals, Juan Manuel; Úbeda Farré, Eduard; Tamayo Palau, José María
 

Coordination

 

Supporters