Use this identifier to quote or link this document:

Reduction, Linearization and stability of relative equilibria for mechanical systems on riemannian manifolds
Bullo, Francesco; Lewis, Andrew D.
Centre de Recerca Matemàtica
Consider a Riemannian manifold equipped with an infinitesimal isometry. For this setup, a unified treatment is provided, solely in the language of Riemannian geometry, of techniques in reduction, linearization, and stability of relative equilibria. In particular, for mechanical control systems, an explicit characterization is given for the manner in which reduction by an infinitesimal isometry, and linearization along a controlled trajectory "commute." As part of the development, relationships are derived between the Jacobi equation of geodesic variation and concepts from reduction theory, such as the curvature of the mechanical connection and the effective potential. As an application of our techniques, fiber and base stability of relative equilibria are studied. The paper also serves as a tutorial of Riemannian geometric methods applicable in the intersection of mechanics and control theory.
Riemann, Varietats de
Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;618

Full text files in this document

Files Size Format
pr618.pdf 4.540 MB PDF

Show full item record