To access the full text documents, please follow this link: http://hdl.handle.net/2117/19874

Kinematic reduction and the Hamilton-Jacobi equation
Barbero Liñán, María; De León, Manuel; Martin de Diego, David; Marrero, Juan Carlos; Muñoz Lecanda, Miguel Carlos
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Universitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
A close relationship between the classical Hamilton- Jacobi theory and the kinematic reduction of control systems by decoupling vector fields is shown in this paper. The geometric interpretation of this relationship relies on new mathematical techniques for mechanics defined on a skew-symmetric algebroid. This geometric structure allows us to describe in a simplified way the mechanics of nonholonomic systems with both control and external forces.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
Hamilton-Jacobi equations
Decoupling vector fields
Hamilton-Jacobi equation
Kinematic reduction
Mechanical control systems
Skew-symmetric algebroids
Equacions de Hamilton-Jacobi
Article - Draft
Article
American Institute of Mathematical Sciences
         

Show full item record

Related documents

Other documents of the same author

Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso
Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos
Barbero Liñán, María; Echeverría Enríquez, Arturo; Martín de Diego, David; Muñoz Lecanda, Miguel Carlos; Román Roy, Narciso
Barbero Liñán, María; Muñoz Lecanda, Miguel Carlos
 

Coordination

 

Supporters