To access the full text documents, please follow this link: http://hdl.handle.net/2117/19240

Finite-valued indistinguishability operators
Mayor, Gaspar; Recasens Ferrés, Jorge
Universitat Politècnica de Catalunya. Departament d'Estructures a l'Arquitectura; Universitat Politècnica de Catalunya. FIA - Modelització Matemàtica Funcional i Aplicacions
Fuzzy equality relations or indistinguishability operators generalize the concepts of crisp equality and equivalence relations in fuzzy systems where inaccuracy and uncertainty is dealt with. They generate fuzzy granularity and are an essential tool in Computing with Words (CWW). Traditionally, the degree of similarity between two objects is a number between 0 and 1, but in many occasions this assignment cannot be done in such a precise way and the use of indistinguishability operators valued on a finite set of linguistic labels such as small, very much, etc. would be advisable. Recent advances in the study of finite-valued t-norms allow us to combine this kind of linguistic labels and makes the development of a theory of finite-valued indistinguishability operators and their application to real problems possible.
Àrees temàtiques de la UPC::Matemàtiques i estadística::Lògica matemàtica
Fuzzy logic
Lògica difusa
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Mayor, Gaspar; Recasens Ferrés, Jorge
Mayor, Gaspar; Recasens Ferrés, Jorge
Boixader Ibáñez, Dionís; Jacas Moral, Juan; Recasens Ferrés, Jorge
Recasens Ferrés, Jorge; Boixader Ibáñez, Dionís; Jacas Moral, Juan
 

Coordination

 

Supporters