To access the full text documents, please follow this link: http://hdl.handle.net/2117/19171

Transitive closure and betweenness relations
Boixader Ibáñez, Dionís; Jacas Moral, Juan; Recasens Ferrés, Jorge
Universitat Politècnica de Catalunya. Departament d'Estructures a l'Arquitectura; Universitat Politècnica de Catalunya. FIA - Modelització Matemàtica Funcional i Aplicacions
Indistinguishability operators fuzzify the concept of equivalence relation and have been proved a useful tool in theoretical studies as well as in di0erent applications such as fuzzy control or approximate reasoning. One interesting problem is their construction. There are di0erent ways depending on how the data are given and on their future use. In this paper, the length of an indistinguishability operator is de2ned and it is used to relate its generation via max-T product and via the representation theorem when T is an Archimedean t-norm. The link is obtained taking into account that indistinguishability operators generate betweenness relations. The study is also extended to decomposable operators.
Peer Reviewed
Àrees temàtiques de la UPC::Arquitectura::Projectes arquitectònics
Fuzzy sets
Indistinguishability
Dimension
Archimedean t-norm
Lògica difusa
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Boixader Ibáñez, Dionís; Jacas Moral, Juan; Recasens Ferrés, Jorge
Recasens Ferrés, Jorge; Boixader Ibáñez, Dionís; Jacas Moral, Juan
Boixader Ibáñez, Dionís; Jacas Moral, Juan; Recasens Ferrés, Jorge
Boixader Ibáñez, Dionís; Jacas Moral, Juan
Jacas Moral, Juan; Recasens Ferrés, Jorge
 

Coordination

 

Supporters