Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

On Lundh's percolation diffusion
Carroll, Tom; O'Donovan, Julie; Ortega Cerdà, Joaquim
Universitat de Barcelona
A collection of spherical obstacles in the unit ball in Euclidean space is said to be avoidable for Brownian motion if there is a positive probability that Brownian motion diffusing from some point in the ball will avoid all the obstacles and reach the boundary of the ball. The centres of the spherical obstacles are generated according to a Poisson point process while the radius of an obstacle is a deterministic function. If avoidable configurations are generated with positive probability, Lundh calls this percolation diffusion. An integral condition for percolation diffusion is derived in terms of the intensity of the point process and the function that determines the radii of the obstacles.
Processos de Markov
Teoria del potencial (Matemàtica)
Markov processes
Potential theory (Mathematics)
(c) Elsevier B.V., 2012
Elsevier B.V.

Mostrar el registro completo del ítem