Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/18077
Título: | Universal point subsets for planar graphs |
---|---|
Autor/a: | Angelini, Patrizio; Binucci, Carla; Evans, William; Hurtado Díaz, Fernando Alfredo; Liotta, Giuseppe; Mchedlidze, Tamara; Meijer, Henk; Okamoto, Yoshio |
Otros autores: | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta |
Abstract: | A set S of k points in the plane is a universal point subset for a class G of planar graphs if every graph belonging to G admits a planar straight-line drawing such that k of its vertices are represented by the points of S . In this paper we study the following main problem: For a given class of graphs, what is the maximum k such that there exists a universal point subset of size k ? We provide a ⌈ √ n ⌉ lower bound on k for the class of planar graphs with n ver- tices. In addition, we consider the value F ( n; G ) such that every set of F ( n; G ) points in general position is a universal subset for all graphs with n vertices be- longing to the family G , and we establish upper and lower bounds for F ( n; G ) for different families of planar graphs, including 4-connected planar graphs and nested-triangles graphs. |
Abstract: | Peer Reviewed |
Materia(s): | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta Discrete geometry Geometria discreta Classificació AMS::52 Convex and discrete geometry::52C Discrete geometry |
Derechos: | Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Tipo de documento: | info:eu-repo/semantics/submittedVersion info:eu-repo/semantics/conferenceObject |
Editor: | Springer |
Compartir: |
![]() ![]() |