To access the full text documents, please follow this link:

Universality class of fiber bundles with strong heterogeneities
Cruz Hidalgo, Raúl; Kovács, K.; Pagonabarraga Mora, Ignacio; Kun, F.
We study the effect of strong heterogeneities on the fracture of disordered materials using a fiber bundle model. The bundle is composed of two subsets of fibers, i.e. a fraction 0 ≤ α ≤ 1 of fibers is unbreakable, while the remaining 1 - α fraction is characterized by a distribution of breaking thresholds. Assuming global load sharing, we show analytically that there exists a critical fraction of the components αc which separates two qualitatively diferent regimes of the system: below αc the burst size distribution is a power law with the usual exponent Ƭ= 5/2, while above αc the exponent switches to a lower value Ƭ = 9/4 and a cutoff function occurs with a diverging characteristic size. Analyzing the macroscopic response of the system we demonstrate that the transition is conditioned to disorder distributions where the constitutive curve has a single maximum and an inflexion point defining a novel universality class of breakdown phenomena
Mecànica de fractura
Fracture mechanics
Materials -- Fatiga
Materials -- Fatigue
Tots els drets reservats
Article - Draft
Institute of Physics, Società Italiana di Fisica

Show full item record

Related documents

Other documents of the same author

Kovács, K.; Nagy, S.; Cruz Hidalgo, Raúl; Kun, F.; Herrmann, H.J.; Pagonabarraga Mora, Ignacio
Cruz Hidalgo, Raúl; Kun, F.; Kovács, K.; Pagonabarraga Mora, Ignacio
Kovacs, K.; Nagy S.; Hidalgo, R. C.; Kun, F.; Herrmann, Hans J.; Pagonabarraga Mora, Ignacio
Cruz Hidalgo, Raúl; Zuriguel, Iker; Maza, Diego; Pagonabarraga Mora, Ignacio