Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/10256/7552

Highly eccentric hip-hop solutions of the 2N
Barrabés Vera, Esther; Cors, Josep M.; Pinyol i Pérez, Concepció; Soler, Jaume
We show the existence of families of hip-hop solutions in the equal-mass 2N-body problem which are close to highly eccentric planar elliptic homographic motions of 2N bodies plus small perpendicular non-harmonic oscillations. By introducing a parameter ϵ, the homographic motion and the small amplitude oscillations can be uncoupled into a purely Keplerian homographic motion of fixed period and a vertical oscillation described by a Hill type equation. Small changes in the eccentricity induce large variations in the period of the perpendicular oscillation and give rise, via a Bolzano argument, to resonant periodic solutions of the uncoupled system in a rotating frame. For small ϵ ≠ 0, the topological transversality persists and Brouwer's fixed point theorem shows the existence of this kind of solutions in the full system
Topologia
Topology
Poliedres
Polyhedra
Tots els drets reservats
Artículo
info:eu-repo/semantics/acceptedVersion
Elsevier
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Barrabés Vera, Esther; Cors i Iglesias, Josep M.; Pinyol i Pérez, Concepció; Soler Villanueva, Jaume
Ollé Torner, Mercè; Barrabés Vera, Esther; Mondelo González, José María