To access the full text documents, please follow this link: http://hdl.handle.net/2117/17663

Exploiting symmetry on the Universal Polytope
Pfeifle, Julián
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II; Universitat Politècnica de Catalunya. MD - Matemàtica Discreta
The most successful method to date for finding lower bounds on the number of simplices needed to triangulate a given polytope P involves optimizing a linear functional over the associated Universal Polytope U(P). However, as the dimension of P grows, these linear programs become increasingly difficult to formulate and solve. Here we present a method to algorithmically construct the quotient of U(P) by the symmetry group Aut(P) of P, which leads to dramatic reductions in the size of the linear program. We compare the power of our approach with older computations by Orden and Santos, indicate the influence of the combinatorial complexity barrier on these computations, and sketch some future applications.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta
Polytopes
Discrete geometry
Politops
Geometria discreta
52B Polytopes and polyhedra
52C Geometria discreta
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
         

Show full item record

Related documents

Other documents of the same author

Matschke, Benjamin; Pfeifle, Julián; Pilaud, Vincent
Ardila, Federico; Beck, Matthias; Hosten, Serkan; Pfeifle, Julián; Seashore, Kim
 

Coordination

 

Supporters