Use this identifier to quote or link this document: http://hdl.handle.net/2072/206094

Normal forms, stability and splitting of invariant manifolds II. Finitely differentiable Hamiltonians
Bounemoura, Abed
Centre de Recerca Matemàtica
This paper is a sequel to ``Normal forms, stability and splitting of invariant manifolds I. Gevrey Hamiltonians", in which we gave a new construction of resonant normal forms with an exponentially small remainder for near-integrable Gevrey Hamiltonians at a quasi-periodic frequency, using a method of periodic approximations. In this second part we focus on finitely differentiable Hamiltonians, and we derive normal forms with a polynomially small remainder. As applications, we obtain a polynomially large upper bound on the stability time for the evolution of the action variables and a polynomially small upper bound on the splitting of invariant manifolds for hyperbolic tori.
2012-12-01
517 - Anàlisi
Varietats (Matemàtica)
Formes (Matemàtica)
Estabilitat
Hamilton, Sistemes de
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
21 p.
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1133
         

Full text files in this document

Files Size Format
Pr1133.pdf 239.4 KB PDF

Show full item record

 

Coordination

 

Supporters