To access the full text documents, please follow this link:

Sibyl, a factoid question answering system for spoken documents
Comas Umbert, Pere Ramon; Turmo Borras, Jorge; Màrquez Villodre, Lluís
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics; Universitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
In this article, we present a factoid question-answering system, Sibyl, specifically tailored for question answering (QA) on spoken-word documents. This work explores, for the first time, which techniques can be robustly adapted from the usual QA on written documents to the more difficult spoken document scenario. More specifically, we study new information retrieval (IR) techniques designed or speech, and utilize several levels of linguistic information for the speech-based QA task. These include named-entity detection with phonetic information, syntactic parsing applied to speech transcripts, and the use of coreference resolution. Sibyl is largely based on supervised machine-learning techniques, with special focus on the answer extraction step, and makes little use of handcrafted knowledge. Consequently, it should be easily adaptable to other domains and languages. Sibyl and all its modules are extensively evaluated on the European Parliament Plenary Sessions English corpus, comparing manual with automatic transcripts obtained by three different automatic speech recognition (ASR) systems that exhibit significantly different word error rates. This data belongs to the CLEF 2009 track for QA on speech transcripts. The main results confirm that syntactic information is very useful for learning to rank question candidates, improving results on both manual and automatic transcripts, unless the ASR quality is very low. At the same time, our experiments on coreference resolution reveal that the state-of-the-art technology is not mature enough to be effectively exploited for QA with spoken documents. Overall, the performance of Sibyl is comparable or better than the state-of-the-art on this corpus, confirming the validity of our approach.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural
Question-answering systems
Sibyl (Question-answering systems)
Natural language processing (Computer science)
Llenguatge natural (Informàtica) -- Processament

Show full item record

Related documents

Other documents of the same author

Comas Umbert, Pere Ramon; Turmo Borras, Jorge; Màrquez Villodre, Lluís
Ageno Pulido, Alicia; Comas Umbert, Pere Ramon; Padró, Lluís; Turmo Borras, Jorge
González Pellicer, Edgar; Rodríguez Hontoria, Horacio; Turmo Borras, Jorge; Comas Umbert, Pere Ramon; Mehdizadeh Naderi, Ali; Ageno Pulido, Alicia; Sapena Masip, Emilio; Vila Rigat, Marta; Martí, Maria Antònia
Comas Umbert, Pere Ramon; Turmo Borras, Jorge
Alegria, Iñaki; Aranberri, Nora; Comas Umbert, Pere Ramon; Fresno, Víctor; Gamallo, Pablo; Padró, Lluís; San Vicente Roncal, Iñaki; Turmo Borras, Jorge; Zubiaga, Arkaitz