Use this identifier to quote or link this document: http://hdl.handle.net/2072/205479

Tenseness of Riemannian flows
Nozawa, Hiraku; Royo Prieto, José Ignacio
Centre de Recerca Matemàtica
We show that any transversally complete Riemannian foliation &em&F&/em& of dimension one on any possibly non-compact manifold M is tense; namely, (M,&em&F&/em&) admits a Riemannian metric such that the mean curvature form of &em&F&/em& is basic. This is a partial generalization of a result of Domínguez, which says that any Riemannian foliation on any compact manifold is tense. Our proof is based on some results of Molino and Sergiescu, and it is simpler than the original proof by Domínguez. As an application, we generalize some well known results including Masa's characterization of tautness.
2012-11-01
514 - Geometria
Geometria diferencial
Foliacions (Matemàtica)
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
17 p.
Preprint
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1124
         

Full text files in this document

Files Size Format
Pr1124.pdf 254.6 KB PDF

Show full item record

Related documents

 

Coordination

 

Supporters