To access the full text documents, please follow this link:

Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics (MHD) system discretized by a stabilized finite element formulation based on projections
Badia, Santiago; Planas Badenas, Ramon; Gutiérrez Santacreu, Juan Vicente
Universitat Politècnica de Catalunya. Departament de Resistència dels Materials i Estructures en Enginyeria; Universitat Politècnica de Catalunya. (MC)2 - Grup de Mecànica Computacional en Medis Continus
In this article we propose different splitting procedures for the transient incompressible MHD system that are unconditionally stable. We consider two levels of splitting, on one side we perform the segregation of the fluid pressure and magnetic pseudo-pressure from the vectorial fields computation. At the second level, the fluid velocity and induction fields are also decoupled. This way, we transform a fully coupled indefinite multi-physics system into a set of smaller definite ones, clearly reducing the CPU cost.With regard to the finite element approximation, we stick to an unconditionally convergent stabilized finite element formulation, since it introduces convection stabilization, allows to circumvent inf-sup conditions (clearly simplifying implementation issues) and is able to capture nonsmooth solutions of the magnetic sub-problem. However, residual-based finite element formulations are not suitable for segregation, since they lose the skew-symmetry of the off-diagonal blocks. Therefore, in this work we have proposed a novel term-by-term stabilization of the MHD system based on projections that is still unconditionally convergent.
Àrees temàtiques de la UPC::Física::Física de fluids
Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
Magnetohydrodynamics--Mathematical models
Magnetohidrodinàmica -- Models matemàtics
John Wiley & Sons

Show full item record