Empreu aquest identificador per citar o enllaçar aquest document: http://hdl.handle.net/2072/204756

Folner sequences and finite operators
Yakubovich, Dmitry V.; Lledó, Fernando,1967-
Centre de Recerca Matemàtica
This article analyzes Folner sequences of projections for bounded linear operators and their relationship to the class of finite operators introduced by Williams in the 70ies. We prove that each essentially hyponormal operator has a proper Folner sequence (i.e. a Folner sequence of projections strongly converging to 1). In particular, any quasinormal, any subnormal, any hyponormal and any essentially normal operator has a proper Folner sequence. Moreover, we show that an operator is finite if and only if it has a proper Folner sequence or if it has a non-trivial finite dimensional reducing subspace. We also analyze the structure of operators which have no Folner sequence and give examples of them. For this analysis we introduce the notion of strongly non-Folner operators, which are far from finite block reducible operators, in some uniform sense, and show that this class coincides with the class of non-finite operators.
10-2012
517 - Anàlisi
Operadors (Matèmatica)
Seqüències (Matemàtica)
C*-àlgebres
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/
21 p.
Edició preliminar
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1118
         

Text complet d'aquest document

Fitxers Mida Format
Pr1118.pdf 312.3 KB PDF

Mostra el registre complet del document