Use this identifier to quote or link this document:

Wellposedness of a nonlinear, logarithmic Schrödinger equation of Doebner-Goldin type modeling quantum dissipation
Guerrero, Pilar; López, J. L.; Montejo-Gámez, J.; Nieto, J.
Centre de Recerca Matemàtica
This paper is concerned with the modeling and analysis of quantum dissipation phenomena in the Schrödinger picture. More precisely, we do investigate in detail a dissipative, nonlinear Schrödinger equation somehow accounting for quantum Fokker–Planck effects, and how it is drastically reduced to a simpler logarithmic equation via a nonlinear gauge transformation in such a way that the physics underlying both problems keeps unaltered. From a mathematical viewpoint, this allows for a more achievable analysis regarding the local wellposedness of the initial–boundary value problem. This simplification requires the performance of the polar (modulus–argument) decomposition of the wavefunction, which is rigorously attained (for the first time to the best of our knowledge) under quite reasonable assumptions.
517 - Anàlisi
Equacions no lineals
Quàntums, Teoria dels
L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons:
35 p.
Centre de Recerca Matemàtica
Prepublicacions del Centre de Recerca Matemàtica;1098

Full text files in this document

Files Size Format
Pr1098.pdf 499.2 KB PDF

Show full item record

Related documents

Other documents of the same author