To access the full text documents, please follow this link:

Robust elastic 2D/3D geometric graph matching
Serradell, Eduard; Kybic, J.; Moreno-Noguer, Francesc; Fua, Pascal
Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial; Universitat Politècnica de Catalunya. Institut de Robòtica i Informàtica Industrial; Universitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel.ligents
We present an algorithm for geometric matching of graphs embedded in 2D or 3D space. It is applicable for registering any graph-like structures appearing in biomedical images, such as blood vessels, pulmonary bronchi, nerve fibers, or dendritic arbors. Our approach does not rely on the similarity of local appearance features, so it is suitable for multimodal registration with a large difference in appearance. Unlike earlier methods, the algorithm uses edge shape, does not require an initial pose estimate, can handle partial matches, and can cope with nonlinear deformations and topological differences. The matching consists of two steps. First, we find an affine transform that roughly aligns the graphs by exploring the set of all consistent correspondences between the nodes. This can be done at an acceptably low computational expense by using parameter uncertainties for pruning, backtracking as needed. Parameter uncertainties are updated in a Kalman-like scheme with each match. In the second step we allow for a nonlinear part of the deformation, modeled as a Gaussian Process. Short sequences of edges are grouped into superedges, which are then matched between graphs. This allows for topological differences. A maximum consistent set of superedge matches is found using a dedicated branch-and-bound solver, which is over 100 times faster than a standard linear programming approach. Geometrical and topological consistency of candidate matches is determined in a fast hierarchical manner. We demonstrate the effectiveness of our technique at registering angiography and retinal fundus images, as well as neural image stacks.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Robòtica
Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
Image processing -- Digital techniques
Diagnostic imaging -- Digital techniques
Imatges -- Processament -- Tècniques digitals
Diagnòstic per la imatge -- Processament de dades

Show full item record

Related documents

Other documents of the same author

Serradell, Eduard; Özuysa, Mustafa; Lepetit, Vincent; Fua, Pascal; Moreno-Noguer, Francesc
Serradell, Eduard; Glowacki, Przemyslaw; Jan, Kybic; Moreno-Noguer, Francesc; Fua, Pascal
Amável Pinheiro, Miguel; Sznitman, Raphael; Serradell, Eduard; Kybic, Jan; Moreno-Noguer, Francesc; Fua, Pascal
Peñate Sanchez, Adrián; Serradell, Eduard; Andrade-Cetto, Juan; Moreno-Noguer, Francesc
Serradell, Eduard; Romero, Adriana; Leta, Ruben; Gatta, Carlo; Moreno-Noguer, Francesc