To access the full text documents, please follow this link: http://hdl.handle.net/2117/13182

Analyzing human gait and posture by combining feature selection and kernel methods
Samà Monsonís, Albert; Angulo Bahón, Cecilio; Pardo Ayala, Diego Esteban; Català Mallofré, Andreu; Cabestany Moncusí, Joan
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial; Universitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement; Universitat Politècnica de Catalunya. AHA - Arquitectures Hardware Avançades
This paper evaluates a set of computational algorithms for the automatic estimation of human postures and gait properties from signals provided by an inertial body sensor. The use of a single sensor device imposes limitations for the automatic estimation of relevant properties, like step length and gait velocity, as well as for the detection of standard postures like sitting or standing. Moreover, the exact location and orientation of the sensor is also a common restriction that is relaxed in this study. Based on accelerations provided by a sensor, known as the `9 2', three approaches are presented extracting kinematic information from the user motion and posture. Firstly, a two-phases procedure implementing feature extraction and Support Vector Machine based classi cation for daily living activity monitoring is presented. Secondly, Support Vector Regression is applied on heuristically extracted features for the automatic computation of spatiotemporal properties during gait. Finally, sensor information is interpreted as an observation of a particular trajectory of the human gait dynamical system, from which a reconstruction space is obtained, and then transformed using standard principal components analysis, nally Support Vector Regression is used for prediction. Daily living Activities are detected and spatiotemporal parameters of human gait are estimated using methods sharing a common structure based on feature extraction and kernel methods. The approaches presented are susceptible to be used for medical purposes.
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors
Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica
Time-series analysis
Gait in humans
Support vector machines
Posture
Algorismes computacionals
Sèries temporals -- Anàlisi
Reconeixement de formes (Informàtica)
Postura humana
Article - Draft
Article
         

Show full item record

Related documents

Other documents of the same author

Cabestany Moncusí, Joan; Moreno Aróstegui, Juan Manuel; Pérez López, Carlos; Samà Monsonís, Albert; Català Mallofré, Andreu; Rodríguez Molinero, Alejandro; Arnal, Marc
Rodríguez Martín, Daniel Manuel; Pérez López, Carlos; Samà Monsonís, Albert; Cabestany Moncusí, Joan; Català Mallofré, Andreu
Rodríguez Martín, Daniel Manuel; Samà Monsonís, Albert; Pérez López, Carlos; Català Mallofré, Andreu; Moreno Aróstegui, Juan Manuel; Cabestany Moncusí, Joan
Pérez López, Carlos; Samà Monsonís, Albert; Rodríguez Martín, Daniel Manuel; Català Mallofré, Andreu; Cabestany Moncusí, Joan; Moreno Aróstegui, Juan Manuel; De Mingo Fernandez, Eva; Rodríguez Molinero, Alejandro
Rodríguez Molinero, Alejandro; Samà Monsonís, Albert; Pérez Martínez, David Andrés; Pérez López, Carlos; Romagosa Cabús, Jaume; Bayes Rusiñol, Maria Ángels; Sanz, P.; Calopa, M.; Ruiz, J.; Gálvez, C.; de Mingo, E.; Rodríguez Martín, Daniel Manuel; Gonzalo, N.; Formiga, F.; Cabestany Moncusí, Joan; Català Mallofré, Andreu
 

Coordination

 

Supporters