To access the full text documents, please follow this link:

Importance Sampling based on Adaptive Principal Component Analysis
Rosell Gratacòs, Jan; Cruz Llopis, Luis Javier de la; Pérez, Alexander; Suárez Feijóo, Raúl
Universitat Politècnica de Catalunya. Institut d'Organització i Control de Sistemes Industrials; Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial; Universitat Politècnica de Catalunya. SIR - Robòtica Industrial i Servei
Sampling-based approaches are currently the most efficient ones to solve path planning problems, being their performance dependant on the ability to generate samples in those areas of the configuration space relevant to the problem. This paper introduces a novel importance sampling method that uses Principal Component Analysis to focalize the region where to sample in order to increase the probability of finding collision-free configurations. The proposal is illustrated with a 2D configuration space with a narrow passage and compared to the uniform random sampling method.
Peer Reviewed
Àrees temàtiques de la UPC::Informàtica::Robòtica
Attribution-NonCommercial-NoDerivs 3.0 Spain

Show full item record

Related documents

Other documents of the same author

Rosell Gratacòs, Jan; Suárez Feijóo, Raúl; Rosales Gallegos, Carlos; Pérez, Alexander
Rosell Gratacòs, Jan; Suárez Feijóo, Raúl; Pérez, Alexander; Rosales Gallegos, Carlos
Rosell Gratacòs, Jan; Vázquez Hurtado, Carlos; Pérez, Alexander