To access the full text documents, please follow this link: http://hdl.handle.net/2117/14729

Eigenvalue interlacing and weight parameters of graphs
Fiol Mora, Miquel Àngel
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV; Universitat Politècnica de Catalunya. COMBGRAF - Combinatòria, Teoria de Grafs i Aplicacions
Eigenvalue interlacing is a versatile technique for deriving results in algebraic combinatorics. In particular, it has been successfully used for proving a number of results about the relation between the (adjacency matrix or Laplacian) spectrum of a graph and some of its properties. For instance, some characterizations of regular partitions, and bounds for some parameters, such as the independence and chromatic numbers, the diameter, the bandwidth, etc., have been obtained. For each parameter of a graph involving the cardinality of some vertex sets, we can define its corresponding weight parameter by giving some "weights" (that is, the entries of the positive eigenvector) to the vertices and replacing cardinalities by square norms. The key point is that such weights "regularize" the graph, and hence allow us to define a kind of regular partition, called "pseudo-regular," intended for general graphs. Here we s~aow how to use interlacing for proving results about some weight parameters and pseudo-regular partitions of a graph. For instance, generalizing a well-known result of Lovfisz, it is shown that the weight Shannon capacity 6)* of a connected graph F, with n vertices and (adjacency matrix) eigenvalues 2j > )~2 ~> '" ~> 2,, satisfies o~
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
Graph theory
Grafs, Teoria de
05C Teoria de grafs
Attribution-NonCommercial-NoDerivs 3.0 Spain
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
info:eu-repo/semantics/publishedVersion
Article
Elsevier
         

Show full item record

Related documents

Other documents of the same author

Barrière Figueroa, Eulalia; Comellas Padró, Francesc de Paula; Dalfó Simó, Cristina; Fiol Mora, Miquel Àngel
Fiol Mora, Miquel Àngel; Serra Albó, Oriol
Fiol Mora, Miquel Àngel; Vilaltella Castanyer, Joan
 

Coordination

 

Supporters