To access the full text documents, please follow this link: http://hdl.handle.net/2117/12031

Differential operators and the Witten genus for projective spaces and Milnor manifolds
Gálvez Carrillo, Maria Immaculada; Tonks, Andrew
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
A $genus$ (in the sense of Hirzebruch [4]) is a multiplicative invariant of cobordism classes of manifolds. Classical examples include the numerical invariants given by the signature and the $\widehat{A}$- and Todd genera. More recently genera were introduced which take as values modular forms on the upper half-plane, $\frak{h}=\{\,\tau\;|\;\mathrm{Im}(\tau)>0\,\}$. The main examples are the elliptic genus $\phi_{ell}$ and the Witten genus $\phi_W$; we refer the reader to the texts [7] or [9] for details
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria algebraica
Manifolds (Mathematics)
Geometry, Algebraic
Varietats (Matemàtica)
Geometria algebraica
Classificació AMS::37 Dynamical systems and ergodic theory
Classificació AMS::32 Several complex variables and analytic spaces::32W Differential operators in several variables
info:eu-repo/semantics/submittedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Gálvez Carrillo, Maria Immaculada; Gorbounov, V.; Tonks, Andrew
Gálvez Carrillo, Maria Immaculada; Tonks, Andrew; Vallette, Bruno
Gálvez Carrillo, Maria Immaculada; Neumann, Frank; Tonks, Andrew
Gálvez Carrillo, Maria Immaculada; Lombardi, Leandro; Tonks, Andrew
 

Coordination

 

Supporters