Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace: http://hdl.handle.net/2117/1287

Optimal two-point static calibration of measurement systems with quadratic response
Pallàs Areny, Ramon; Jordana Barnils, José; Casas Piedrafita, Óscar
Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica; Universitat Politècnica de Catalunya. GRUP ISI - Grup d'Instrumentació, sensors i interfícies
Measurement devices and instruments must be calibrated after manufacture to correct for component and assembly tolerances, and periodically to correct for drift and aging effects. The number of reference inputs needed for calibration depends on the actual transfer characteristic and the desired accuracy. Often, a linear characteristic is assumed for simplicity, either for the overall input range (global linearization) or for successive input subranges (piecewise linearization). Thus, only two reference inputs are needed for each straight line. This two-point static calibration can be easily implemented in any system having some basic computation capability and allows for the correction of zero and gain errors, and of their drifts if the system is periodically calibrated. Often, the reference inputs for that calibration are the end values of the measurement range (or subrange). However, this is not always the optimal selection because the calibration error is minimal for those reference inputs only, which are not necessarily the most relevant inputs for the system being considered. This article proposes three optimization criteria for the selection of calibration points: limiting the maximal error (LME), minimizing the integral square error (ISE), and minimizing the integral absolute error (IAE). Each of these criteria needs reference inputs whose values are symmetrical with respect to the midrange input (xc), have the form xc±Deltax/(2[square root of]n) when the measurand has a uniform probability distribution function, Deltax being the measurement span, and do not depend on the nonlinearity of the actual response, provided this is quadratic. The factor n depends on the particular criterion selected: n = 2 for LME, n = 3 for ISE, and n = 4 for IAE. These three criteria give parallel calibration lines and can also be applied to other nonlinear responses by dividing the measurement span into convenient intervals. The application of those criteria to the linearization of a type-J thermocouple illustrate their performance and advantages with respect to the customary end-point linearization (n = 1) even for nonquadratic responses. For quadratic responses, n = 1 yields the maximal error at the center of the input measurement range
Peer Reviewed
Àrees temàtiques de la UPC::Enginyeria electrònica::Instrumentació i mesura
Electric measurements
Calibration
Measurement theory
Calibration
Measurement uncertainty
Measurement errors
Error statistics
Linearisation techniques
Measurement systems
Electricitat -- Mesuraments
Calibratge
Artículo
American Institute of Physics
         

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Gasulla Forner, Manuel; Jordana Barnils, José; Pallàs Areny, Ramon; Torrents Dolz, Josep M.
Gasulla Forner, Manuel; Jordana Barnils, José; Pallàs Areny, Ramon; Torrents Dolz, Josep M.
Díaz, Delia H.; Casas Piedrafita, Óscar; Pallàs Areny, Ramon
Díaz, Delia H.; Casas Piedrafita, Óscar; Pallàs Areny, Ramon
KATSANTONIS, Dimitris; DRAMALIS, Christos; Pallàs Areny, Ramon; Casas Piedrafita, Óscar; López Lapeña, Oscar; PUIGDOLLERS, Pau; PEREIRAS, Jaime