To access the full text documents, please follow this link: http://hdl.handle.net/2117/11629

A smooth center manifold theorem which applies to some III-posed partial differential equations with unbounded nonlinearities
Llave Canosa, Rafael de la
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
We prove the existence of a smooth center manifold for several partial differential equations, including ill posed equations with unbounded nonlinearities. We also prove smooth dependence on parameters with respect to some perturbations, including unbounded ones. More concretely, we prove an abstract theorem and present applications to several concrete equations: ill posed Boussinesq, equation and system and nonlinear Laplace equations in cylindrical domains. We also consider the effect of some geometric structures.
Peer Reviewed
Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
Differential equations
Boussinesq equations
Center manifold
Ill-posed equations
Reduction principles
Center manifolds
Ill posed equations
Boussinesq equations
Reduction principles
Equacions diferencials
info:eu-repo/semantics/publishedVersion
Article
         

Show full item record

Related documents

Other documents of the same author

Fontich, Ernest; Llave Canosa, Rafael de la; Martín de la Torre, Pablo
Fontich, Ernest; Llave Canosa, Rafael de la; Martín de la Torre, Pablo
Delshams Valdés, Amadeu; Llave Canosa, Rafael de la; Seara, Tere M.
Delshams Valdés, Amadeu; Llave Canosa, Rafael de la; Martínez-Seara Alonso, M. Teresa
 

Coordination

 

Supporters