Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

New mini-bucket partitioning heuristics for bounding the probability of evidence
Rollón Rico, Emma; Dechter, Rina
Universitat Politècnica de Catalunya. Departament de Llenguatges i Sistemes Informàtics; Universitat Politècnica de Catalunya. LOGPROG - Lògica i Programació
Mini-Bucket Elimination (MBE) is a well-known approximation algorithm deriving lower and upper bounds on quantities of interest over graphical models. It relies on a procedure that partitions a set of functions, called bucket, into smaller subsets, called mini-buckets. The method has been used with a single partitioning heuristic throughout, so the impact of the partitioning algorithm on the quality of the generated bound has never been investigated. This paper addresses this issue by presenting a framework within which partitioning strategies can be described, analyzed and compared. We derive a new class of partitioning heuristics from first-principles geared for likelihood queries, demonstrate their impact on a number of benchmarks for probabilistic reasoning and show that the results are competitive (often superior) to state-ofthe-art bounding schemes.
Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica::Algorísmica i teoria de la complexitat
Approximation algorithms

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Rollón Rico, Emma; Larrosa Bondia, Francisco Javier; Dechter, Rina
Larrosa Bondia, Francisco Javier; Rollón Rico, Emma; Dechter, Rina
Dechter, Rina; Kask, Kalev; Lam, William; Larrosa Bondia, Francisco Javier