To access the full text documents, please follow this link:

Strong reflexivity of Abelian groups
Bruguera Padró, Mª Montserrat; Chasco Ugarte, Maria Jesús
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
A reflexive topological group G is called strongly reflexive if each closed sub-group and each Hausdorff quotient of the group G and of its dual group is reflexive. In this paper we establish the adequate concept of strong reflexivity for convergence groups and we prove that the product of countable many locally compact topological groups and complete metrizable nuclear groups are BB-strongly reflexive.
Topological groups
Topological linear spaces
Pontryagin duality theorem
dual group
convergence group
continuous convergence
reflexive group
strong reflexive group
Cech complete group
Espais topològics
Lie, Grups de
Classificació AMS::22 Topological groups, lie groups::22A Topological and differentiable algebraic systems
Classificació AMS::46 Associative rings and algebras::46A Topological linear spaces and related structures
Attribution-NonCommercial-NoDerivs 2.5 Spain

Show full item record

Related documents

Other documents of the same author

Bruguera Padró, Mª Montserrat; Chasco Ugarte, Maria Jesús; Martín Peinador, Elena; Tarieladze, V. I. (Vazha Izemovich)
Galindo Pastor, Jorge; Tkachenko, Mikhail; Bruguera Padró, Mª Montserrat; Hernandez, Constancio