To access the full text documents, please follow this link: http://hdl.handle.net/2117/933

A Torelli theorem for the moduli space of parabolic rank two vector bundles over curves.
Balaji, V.; Baño Rollin, Sebastian del; Biswas, Indranil
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
Let S (respectively, S') be a finite subset of a compact connected Riemann surface X (respectively, X') of genus at least two. Let M (respectively, M') denote a moduli space of parabolic stable bundles of rank two over X (respectively, X') with fixed determinant of degree one,having a nontrivial quasi-parabolic structure over each point of S (respectively, S'), and of parabolic degree less than two. It is proved that M is isomorphic to M' if and only if there is an isomorphism of X with X' taking S to S'.
Geometry, Algebraic
Moduli space
Torelli theorem
NEF cone
Deligne-Beilinson cohomology
Cicles
Fibrats (Matemàtica)
Classificació AMS::14 Algebraic geometry::14C Cycles and subschemes
Classificació AMS::14 Algebraic geometry::14D Families, fibrations
Attribution-NonCommercial-NoDerivs 2.5 Spain
http://creativecommons.org/licenses/by-nc-nd/2.5/es/
Article
         

Show full item record

Related documents

Other documents of the same author

Baño Rollin, Sebastian del; Ferreiro Castilla, Albert; Utzet, Frederic
Baño Rollin, Sebastian del; Navarro, Vicenç (Navarro Aznar)
Baño Rollin, Sebastian del
 

Coordination

 

Supporters