To access the full text documents, please follow this link:

Homoclinic orbits of twist maps and billiards
Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
The splitting of separatrices for hyperbolic fixed points of twist maps with $d$ degrees of freedom is studied through a real-valued function, called the Melnikov potential. Its non-degenerate critical points are associated to transverse homoclinic orbits and an asymptotic expression for the symplectic area between homoclinic orbits is given. Moreover, Morse theory can be applied to give lower bounds on the number of transverse homoclinic orbits. This theory is applied first to elliptic billiards, where non-integrability holds for any non-trivial entire symmetric perturbation. Next, symmetrically perturbed prolate billiards with $d>1$ degrees of freedom are considered. Several topics are studied about these billiards: existence of splitting, explicit computations of Melnikov potentials, existence of $8$ or $8d$ transverse homoclinic orbits, exponentially small splitting, etc
Hamiltonian dynamical systems
Lagrangian functions
Differentiable dynamical systems
Hamiltonian systems
Homoclinic orbits
Hamilton, Sistemes de
Lagrange, Funcions de
Sistemes dinàmics diferenciables
Classificació AMS::37 Dynamical systems and ergodic theory::37E Low-dimensional dynamical systems
Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
Classificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
Attribution-NonCommercial-NoDerivs 2.5 Spain

Show full item record

Related documents

Other documents of the same author

Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Delshams Valdés, Amadeu; Ramírez Ros, Rafael