Para acceder a los documentos con el texto completo, por favor, siga el siguiente enlace:

Splitting of separatrices in Hamiltonian systems and symplectic maps
Delshams Valdés, Amadeu; Martínez-Seara Alonso, M. Teresa; Ramírez Ros, Rafael
Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I; Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Poincar\'e, Melnikov and Arnol'd introduced the standard method for measuring the splitting of separatrices of Hamiltonian systems. It is based on the study of the zeros of the so-called Melnikov integral, a vectorial function for three or more degrees of freedom, that gives the first-order behavior. In the most interesting cases, it turns out that the splitting is exponentially small with respect of the parameter of the perturbation, and that means that the remainder has to be bounded very carefully. The mechanism for obtaining rigorously this exponentially small splitting for the one and a half degrees of freedom Hamiltonians is reviewed, and the main ideas for its generalization to more degrees of freedom are presented. Concerning symplectic maps, the Melnikov function is not an integral anymore, but an infinite sum. Nevertheless, for meromorphic perturbations of $2D$-area preserving maps, the Melnikov function turns out to be an elliptic function, and moreover can be evaluated via residues. Furthermore, general results on non-integrability can be provided. For instance, the elliptic billiard turns out to be non-integrable when perturbed by any non-trivial entire perturbation. For more degrees of freedom, using variational arguments, the Melnikov vectorial function for a symplectic map can be deduced from a scalar function (the Melnikov potential), and the splitting of separatrices associated to hyperbolic points can also be easily detected in several situations, for instance for generalized standard maps.
Dynamical systems
Sistemes dinàmics
Sistemes dinàmics
Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
Classificació AMS::34 Ordinary differential equations::34C Qualitative theory
Classificació AMS::34 Ordinary differential equations::34E Asymptotic theory
Classificació AMS::37 Dynamical systems and ergodic theory::37E Low-dimensional dynamical systems
Attribution-NonCommercial-NoDerivs 2.5 Spain

Mostrar el registro completo del ítem

Documentos relacionados

Otros documentos del mismo autor/a

Kubyshin, Yu A.; Larreal Barreto, Oswaldo; Ramírez Ros, Rafael; Martínez-Seara Alonso, M. Teresa
Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Delshams Valdés, Amadeu; Ramírez Ros, Rafael
Delshams Valdés, Amadeu; Ramírez Ros, Rafael